Norming Points and Unique Minimality of Orthogonal Projections

نویسنده

  • BORIS SHEKHTMAN
چکیده

where 1≤ p ≤∞ and μ is normalized Lebesgue measure on (−π,π). LetV be the space of trigonometric polynomials of degree n and let P be the Fourier projection from Lp(−π,π) onto V . It is well known (see [2, 3, 16]) that P is a minimal projection, that is, P has the least norm among all projections from Lp(−π,π) onto V . For p = 1,2 and p =∞, it was proved that P is a unique projection that has this property (see [4, 7]). For the other values of p, the uniqueness of the minimal projection is a wide open question. More generally, let V be a complemented subspace of Lp(μ). Define

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Minimal Projections onto Two-dimensional Subspaces

In this paper we prove that the minimal projections from Lp (1 < p < ∞) onto any two-dimensional subspace is unique. This result complements the theorems of W. Odyniec ([OL, Theorem I.1.3], [O3]) We also investigate the minimal number of norming points for such projections.

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Some Conditions for Characterizing Minimum Face in Non-Radial DEA Models with Undesirable Outputs

The problem of utilizing undesirable (bad) outputs in DEA models often need replacing the assumption of free disposability of outputs by weak disposability of outputs. The Kuosmanen technology is the only correct representation of the fully convex technology exhibiting weak disposability of bad and good outputs. Also, there are some specific features of non-radial data envelopment analysis (DEA...

متن کامل

On constructions of strong and uniformly minimal M-bases in Banach spaces

We find a natural class of transformations (”flattened perturbations”) of a norming M-basis in a Banach space X , which give a strong norming M-basis in X . This simplifies and generalizes the positive answer to the ”strong M-basis problem” solved by P. Terenzi. We also show that in general one cannot achieve uniformly minimality applying standard transformations to a given norming M-basis, des...

متن کامل

ON THE CONTINUITY OF PROJECTIONS AND A GENERALIZED GRAM-SCHMIDT PROCESS

Let ? be an open connected subset of the complex plane C and let T be a bounded linear operator on a Hilbert space H. For ? in ? let e the orthogonal projection onto the null-space of T-?I . We discuss the necessary and sufficient conditions for the map ?? to b e continuous on ?. A generalized Gram- Schmidt process is also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006